1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// Copyright Ferdinand Majerech 2011-2014.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
module dyaml.queue;
import std.traits : hasMember, hasIndirections;
package:
/// Simple queue implemented as a singly linked list with a tail pointer.
///
/// Needed in some D:YAML code that needs a queue-like structure without too much
/// reallocation that goes with an array.
///
/// Allocations are non-GC and are damped by a free-list based on the nodes
/// that are removed. Note that elements lifetime must be managed
/// outside.
struct Queue(T)
if (!hasMember!(T, "__xdtor"))
{
private:
// Linked list node containing one element and pointer to the next node.
struct Node
{
T payload_;
Node* next_;
}
// Start of the linked list - first element added in time (end of the queue).
Node* first_;
// Last element of the linked list - last element added in time (start of the queue).
Node* last_;
// free-list
Node* stock;
// Length of the queue.
size_t length_;
// allocate a new node or recycle one from the stock.
Node* makeNewNode(T thePayload, Node* theNext = null) @trusted nothrow @nogc
{
import std.experimental.allocator : make;
import std.experimental.allocator.mallocator : Mallocator;
Node* result;
if (stock !is null)
{
result = stock;
stock = result.next_;
result.payload_ = thePayload;
result.next_ = theNext;
}
else
{
result = Mallocator.instance.make!(Node)(thePayload, theNext);
// GC can dispose T managed member if it thinks they are no used...
static if (hasIndirections!T)
{
import core.memory : GC;
GC.addRange(result, Node.sizeof);
}
}
return result;
}
// free the stock of available free nodes.
void freeStock() @trusted @nogc nothrow
{
import std.experimental.allocator.mallocator : Mallocator;
while (stock !is null)
{
Node* toFree = stock;
stock = stock.next_;
static if (hasIndirections!T)
{
import core.memory : GC;
GC.removeRange(toFree);
}
Mallocator.instance.deallocate((cast(ubyte*) toFree)[0 .. Node.sizeof]);
}
}
public:
@disable void opAssign(ref Queue);
@disable bool opEquals(ref Queue);
@disable int opCmp(ref Queue);
this(this) @safe nothrow @nogc
{
auto node = first_;
first_ = null;
last_ = null;
while (node !is null)
{
Node* newLast = makeNewNode(node.payload_);
if (last_ !is null)
last_.next_ = newLast;
if (first_ is null)
first_ = newLast;
last_ = newLast;
node = node.next_;
}
}
~this() @safe nothrow @nogc
{
freeStock();
stock = first_;
freeStock();
}
/// Returns a forward range iterating over this queue.
auto range() @safe pure nothrow @nogc
{
static struct Result
{
private Node* cursor;
void popFront() @safe pure nothrow @nogc
{
cursor = cursor.next_;
}
ref T front() @safe pure nothrow @nogc
in(cursor !is null)
{
return cursor.payload_;
}
bool empty() @safe pure nothrow @nogc const
{
return cursor is null;
}
}
return Result(first_);
}
/// Push a new item to the queue.
void push(T item) @nogc @safe nothrow
{
Node* newLast = makeNewNode(item);
if (last_ !is null)
last_.next_ = newLast;
if (first_ is null)
first_ = newLast;
last_ = newLast;
++length_;
}
/// Insert a new item putting it to specified index in the linked list.
void insert(T item, const size_t idx) @safe nothrow
in
{
assert(idx <= length_);
}
do
{
if (idx == 0)
{
first_ = makeNewNode(item, first_);
++length_;
}
// Adding before last added element, so we can just push.
else if (idx == length_)
{
push(item);
}
else
{
// Get the element before one we're inserting.
Node* current = first_;
foreach (i; 1 .. idx)
current = current.next_;
assert(current);
// Insert a new node after current, and put current.next_ behind it.
current.next_ = makeNewNode(item, current.next_);
++length_;
}
}
/// Returns: The next element in the queue and remove it.
T pop() @safe nothrow
in
{
assert(!empty, "Trying to pop an element from an empty queue");
}
do
{
T result = peek();
Node* oldStock = stock;
Node* old = first_;
first_ = first_.next_;
// start the stock from the popped element
stock = old;
old.next_ = null;
// add the existing "old" stock to the new first stock element
if (oldStock !is null)
stock.next_ = oldStock;
if (--length_ == 0)
{
assert(first_ is null);
last_ = null;
}
return result;
}
/// Returns: The next element in the queue.
ref inout(T) peek() @safe pure nothrow inout @nogc
in
{
assert(!empty, "Trying to peek at an element in an empty queue");
}
do
{
return first_.payload_;
}
/// Returns: true of the queue empty, false otherwise.
bool empty() @safe pure nothrow const @nogc
{
return first_ is null;
}
/// Returns: The number of elements in the queue.
size_t length() @safe pure nothrow const @nogc
{
return length_;
}
}
@safe nothrow unittest
{
auto queue = Queue!int();
assert(queue.empty);
foreach (i; 0 .. 65)
{
queue.push(5);
assert(queue.pop() == 5);
assert(queue.empty);
assert(queue.length_ == 0);
}
int[] array = [1, -1, 2, -2, 3, -3, 4, -4, 5, -5];
foreach (i; array)
{
queue.push(i);
}
array = 42 ~ array[0 .. 3] ~ 42 ~ array[3 .. $] ~ 42;
queue.insert(42, 3);
queue.insert(42, 0);
queue.insert(42, queue.length);
int[] array2;
while (!queue.empty)
{
array2 ~= queue.pop();
}
assert(array == array2);
}
|